Skip to content
  • Proudly Made in the USA
  • QUOTE
  • 888.653.3333
  • sale@moishaglass.com
  • Products
    • Fire Protective Glass Tested to NFPA 252/257, UL 9/10C, ULC S104/S106; Blocks smoke and flames.
    • SuperLite® I
    • SuperClear® 45-HS
    • SuperClear® 45-HS-LI
    • SuperLite® I-XL
    • SuperLite® I-XL IGU
    • SuperLite® X-45/60/90
    • SuperLite® II-XL 45
    • Ceramics
    • Fire Resistive Glass Tested to ASTM E119 / UL 263 / ULC S101; Blocks smoke, flames and radiant heat.
    • SuperLite® II-XL 60
    • SuperLite® II-XL 90
    • SuperLite® II-XL 120
    • SuperLite® II-XLB 60
    • SuperLite® II-XLB 120
    • SuperLite® II-XLM 60
    • SuperLite® II-XLM 120
    • SuperSecure® II-XLS 45-120
    • Fire Rated Walls 60-120 minute fire resistive glass and frame assemblies tested to ASTM E119 / UL 263 / ULC S101.
    • GPX® Architectural Series Fire Resistive
    • GPX® Curtain Wall
    • GPX® Hurricane
    • GPX® Ballistic
    • GPX® Blast System
    • GPX® EZ Frame
    • Fire Rated Doors Full vision 20-45 minute fire protective doors and 60-90 minute temperature rise doors tested to NFPA 252 / UL 10C / ULC S104.
    • GPX® Architectural Series Fire Protective
    • GPX® Architectural Series Fire Resistive
    • GPX® Builders Series Fire Protective
    • GPX® Builders Series Temperature Rise
    • GPX® Hurricane
    • GPX® Ballistic
    • GPX® Vision Kit
    • Fire Rated Openings 20-45 minute fire protective glass and framing assemblies tested to NFPA 257 / UL 9 / ULC S106.
    • GPX® Architectural Series Fire Protective
    • GPX® Builders Series Fire Protective
    • GPX® EZ Frame
    • Fire Rated Floors 60-120 minute fire resistive glass floor assemblies tested to ASTM E119 / UL 263 / ULC S101.
    • GPX® FireFloor
    • Fire Rated Fences 20-60 minute fire rated glass fence for WUI areas or designated fire zones.
    • SAFTI FENCE
    • Specialty Glass
    • Laminated Safety Glass
  • Literature
  • Specs
  • Details
  • Videos
  • Resources
    About Us
    Videos
    Case Studies
    Articles
    Blogs
    Continuing Education
    Literature
    BIM Library
    Industry Links
    Press Releases
    Testimonials
    Technical Bulletins
    Newsletters
    Product Selector
  • Blog
  • Contact
    Contact Us
    Meet Our Team
    Find Your Local Rep
    Request a Quote
  • Products
    • Fire Protective Glass
    • Fire Resistive Glass
    • Fire Rated Walls
    • Fire Rated Doors
    • Fire Rated Openings
    • Fire Rated Floors
    • Fire Rated Fences
  • Literature
  • Specs
  • Details
  • Videos
  • Resources
    • About Us
    • Product Selector
    • Articles
    • Blogs
    • BIM Library
    • Case Studies
    • Newsletters
    • Press Releases
    • Continuing Education
    • Literature
    • Technical Bulletins
    • Testimonials
    • Industry Links
    • Videos
  • Gallery
  • Contact
    • Contact Us
    • Meet Our Team
    • Find Your Local Rep
    • Request a Quote
Menu
  • Products
    • Fire Protective Glass
    • Fire Resistive Glass
    • Fire Rated Walls
    • Fire Rated Doors
    • Fire Rated Openings
    • Fire Rated Floors
    • Fire Rated Fences
  • Literature
  • Specs
  • Details
  • Videos
  • Resources
    • About Us
    • Product Selector
    • Articles
    • Blogs
    • BIM Library
    • Case Studies
    • Newsletters
    • Press Releases
    • Continuing Education
    • Literature
    • Technical Bulletins
    • Testimonials
    • Industry Links
    • Videos
  • Gallery
  • Contact
    • Contact Us
    • Meet Our Team
    • Find Your Local Rep
    • Request a Quote
Articles
RADIANT HEAT TRANSFER
Radiant Heat Transmission is Deadly
RADIANT HEAT TRANSFER

Radiant Heat Transmission is Deadly

ByDiana S
| May 24, 2015

How Radiant Heat Can Be Fatal

Radiant heat transmission is deadly. Fire emits electromagnetic radiation that can injure or kill passersby or result in spontaneous combustion of materials. Not all fire rated glass prevents the transmission of radiant heat.

Where there is smoke, there’s fire. Where there’s fire, there’s an invisible deadly threat commonly referred to as radiant heat. When you warm yourself in front of a fireplace, you experience radiant heat firsthand. In small doses, radiant heat can be warm and welcoming, but the amount of radiant heat generated by an uncontrolled fire can be a serious threat to life safety and property.

Here’s what happens. Fire emits electromagnetic radiation that travels in invisible waves through space. When these waves hit a combustible material or a person, the radiant energy is absorbed and converted into heat. When radiant heat is absorbed by a combustible material, the object catches fire when the material’s ignition temperature is reached. Protecting people from radiant heat is vital because exposed individuals quickly feel unbearable pain, followed by second-degree burns, making safe egress impossible.

Radiant heat is typically measured on the non-fire side at a distance of 1.5 to 2 meters. Studies of critical radiation levels show that unbearable human pain occurs at 5 kilowatts per square meter. Spontaneous combustion of wood occurs at 12-13 kilowatts per square meter, and values as low as 7.5 have been reported.

What are the dangers of radiant heat transfer?

Each year lives and property are destroyed by fire — destruction that could be avoided, or certainly minimized, by applying what we know about fire and fire protection. For example, structures that survived the Oakland/Berkeley Hills fire in 1991, which killed 25 people, injured 150 and destroyed more than 3,000 buildings, had several things in common. In addition to having fire-resistive roofing material; large, clear yards; stucco exterior walls; and few overhangs, they had windows that resisted breakage in the face of fire and reduced the transfer of radiant heat. These windows protected a structure’s interior from even the highest heat levels.

Fire Protective vs Fire Resistive diagram

Fire Resistive Glazing Blocks Radiant Heat

Fire-resistive glazing is designed to block radiant heat transfer from one building compartment to another and protect people leaving a building through an exit corridor. Click here  to view a video summarizing the risks of radiant heat. In order to specify the right type of fire rated glass, it is important to look beyond the fire endurance rating (20/45/60/90/120/180 minutes) and focus instead on the overall performance of the glass. Fire-resistive glass, in combination with fire-resistive framing members, is tested for both fire endurance and its ability to limit a rise in temperature on the surface opposite the fire per ASTM E119.

Fire Protective Glass Does NOT Block Radiant Heat

Fire protective glass is designed to compartmentalize smoke and flames and is subject to application, area and size limitations under the IBC. Fire protective glass is typically used in doors and openings up to 45 minutes and cannot exceed 25% of the total wall area because it does not block radiant heat transmission. These products are also subject to the following test standards:

  • NFPA 252, Standard Methods of Fire Tests of Door Assemblies
  • NFPA 257, Standard on Fire Tests for Window and Glass Block Assemblies
  • UL 9, Standard for Safety Fire Tests of Window Assemblies
  • UL 10B, Fire Tests of Door Assemblies
  • UL 10C, Positive Pressure Fire Tests of Door Assemblies

Click here or the image to the right  to see a video demonstrating the effect of radiant heat energy passing through three types of fire rated glass – fire protective ceramic Glazing, fire protective Safety Wired Glass and a specialty tempered heat reflective glazing called SuperLite I-XL, which offers partial radiant heat protection.

Fire Protective vs Fire Resistive diagram

Where should fire resistive glazing be used?

Building and fire codes work to prevent the transfer of radiant heat where the objective is to protect lives or property, where uncontrolled radiant heat can impact occupants needing to exit past glass and where the potential for fire spread due to auto-ignition of combustibles is a possibility. Of particular consideration is the speed with which occupants can pass by the glazing, the width of the corridor, and the amount of fuel on the other side of the glazing.

Do labels always show a glazing product’s ability to block radiant heat?

Before the passage of 2012 IBC, sometimes. It’s about to get a lot easier to use the right glazing product in the right application, thanks to new and revised tables in the 2012 IBC. Specifically, Table 716.3, Marking Fire Rated Glazing Assemblies, provides architects, specifiers, installers, plan reviewers, and building officials with an easy reference that shows which performance standard(s) a product meets along with its duration rating. The new marks replace test standard numbers with letter identifications, which are then used in tables for Opening Fire Protection Assemblies, Ratings and Markings (new Table 716.5 revised Table 715.4) and Fire Window Assembly Fire Protection Ratings (Table 716.6).  The same marking system was included in the 2012 edition of NFPA 101 Life Safety Code.  Read more…

Which products block radiant heat?

  • Insulated products, such as SuperLite II-XL, Pyrostop, Pyrobel, Contraflam, Swissflam, etc. — products that are rated 60-minute plus to ASTM E119, limit temperature rise to 250ºF degrees and reduce radiant heat flux to 0 kilowatts per square meter.
  • SuperLite I-XL, a window and door product that reduces radiant heat flux to one kilowatt per square meter at 60 minutes and is like products widely used in Europe to limit radiant heat flux.
  • Fire Resistive Framing
Fire Protective vs Fire Resistive diagram

Which products do NOT limit radiant heat?

  • Wired glass allows radiated flux on the unexposed side of 35-38 kilowatts per square meter at 37 minutes.
  • Ceramics, such as FireLite and Keralite, allow radiant heat flux of 75 kilowatts per square meter at 60 minutes.
  • Hollow Metal Framing
Share:
PrevNext ArticleFire Resistive Glass Protects From Radiant Heat
Previous ArticleTransparent Lab Walls Enhance Collaboration, Sustainability, SafetyNext
Back to Articles

Engineering. Design. Code.

Whether you’re looking for fire-rated walls, doors, openings, floors or a specialty service, we have the solution for you. With over 40 years of experience in testing, innovating, and providing technologically advanced fire-rated glass and framing products, we deliver unyielding performance and quality at a competitive price.

Let's Talk!

  • 888.653.3333
    (English)
  • 888.653.3333 ext. 652
    (Spanish)
  • sale@moishaglass.com
  • Representative Map
Contact
Phone
888.653.3333 - English
888.653.3333 ext. 652 - Spanish
Fax
888.653.4444
Email
sale@moishaglass.com
Address
Corporate
100 N Hill Dr, Ste12, Brisbane, CA 94005
Factory
220 S R Street, Merced, CA 95341

Sign up for our Newsletter!

Get notified of industry updates and new product alerts.

AFFILIATE COMPANIES
Division 5
1850 Grogan Ave, Merced, CA 95341
888.653.3333
Division 8
1891 Wardrobe Ave, Merced, CA 95341
866.848.2667
© 2025 SAFTI FIRST. All rights reserved.​
Disclaimer & Privacy Policy | Cookie Policy
Instagram Linkedin Facebook Youtube Vimeo
Suggested Pages
Case Studies
Request a Quote
SuperClear® 45-HS-LI
Continuing Education
Request a Quote
Continuing Education
Videos
SuperClear® 45-HS-LI
Case Studies
This website uses cookies to ensure you get the best experience on our website.

This website uses cookies to ensure you get the best experience on our website.


This website uses cookies to improve user experience. A cookie file is stored in your web browser and allows the website to recognize you and make your next visit easier and the website more useful to you. By using our website, you consent to all cookies in accordance with our Cookies Policy. Learn more.
Functional Always active
The technical storage or access is strictly necessary for the legitimate purpose of enabling the use of a specific service explicitly requested by the subscriber or user, or for the sole purpose of carrying out the transmission of a communication over an electronic communications network.
Preferences
The technical storage or access is necessary for the legitimate purpose of storing preferences that are not requested by the subscriber or user.
Statistics
The technical storage or access that is used exclusively for statistical purposes. The technical storage or access that is used exclusively for anonymous statistical purposes. Without a subpoena, voluntary compliance on the part of your Internet Service Provider, or additional records from a third party, information stored or retrieved for this purpose alone cannot usually be used to identify you.
Marketing
The technical storage or access is required to create user profiles to send advertising, or to track the user on a website or across several websites for similar marketing purposes.
Manage options Manage services Manage vendors Read more about these purposes
View preferences
{title} {title} {title}